REDUCTIVE GENERATION OF ACTIVE ZERO-VALENT TIN IN SnCl₂-Al system and its use for HIGHLY DIASTEREOSELECTIVE REACTION OF CINNAMYL CHLORIDE AND ALDEHYDES.

Kenji Uneyama, Hiromi Nanbu, and Sigeru Torii^{*}. Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700, Japan

Summary; Highly diastereoselective reaction of cinnamyl chloride with aldehydes was achieved by the use of active zero-valent tin generated in SnCl₂-Al system.

Reactions of the well-designed allylic organometallics of silicon, chromium, boron, and etc with aldehydes provide the corresponding homoallylic alcohols with high diastereoselectivity¹⁾. Not only the high stereoselectivity and yield, but also a facile synthetic procedure are essential for any feasible synthetic methodologies. Recent Coxon's communication²⁾ on the Sn-Al³⁾ mediated diastereoselective reaction of cinnamyl chloride with aldehydes has prompted us to describe our simple method on SnCl₂-Al system which creates a higher reactivity along with complete diastereocontrol and high yield in a neutral medium.

Into a suspension of commercial grade aluminium powder (2 mmol) and tin(II) chloride (1 mmol) in THF (2.5 ml)- H_2O (1 ml) was added a mixture of aldehyde (2.4 mmol) and cinnamyl chloride (2 mmol), and the mixture was stirred at 45-50 ^{O}C for 2 h. Neither use of Lewis acids nor replacement of air in a reaction vessel with an inert gas is required. This reaction affords three isomers exclusively for aryl and alkyl aldehydes. α , β -Unsaturated aldehydes provide 1,2-adducts with a less diastereo-preference. This stereochemistry is consistent with those of cinnamyltriphenyltin⁴) and crotylchromium reagent⁵) but opposite to cinnamyltrimethylsilane⁶ and crotyltributyltin⁷ where acyclic transition state is proposed. It is noteworthy that the present tin reagent-mediated reaction exhibits a high stereocontrol even in an aqueous solvent.

2395

Use of tin(II) chloride is essential in the present purpose. Thus, metal tin combined with aluminium powder was employed to give 36% of 3 although the diastereoselectivity is satisfactory $(96:4)^{2}$. The reaction rate (12h) was slower than that (2h) of SnCl₂-Al system so that hydrolysis of cinnamyl chloride took place as a side reaction, resulting in the formation of cinnamyl alcohol 4 $(40\%)^{8}$. The action of either tin(II) chloride or metal tin in the absence of aluminium resulted in only 8% of 3 and 83% of 4, or 45% of 3 and 52% of 4 after 24 h stirring, respectively. These results clearly demonstrate that zero-valent tin generated by reduction of tin(II) chloride with aluminium is responsible for effective oxidative addition of cinnamyl chloride.

RUN	aldehyde	total yield (%) ^a	threo : erythro	J (Hz) ^C
1	с ₆ н ₅ сно	82	98 : 2	7.6
2	p-Cl-C6H4CHO	84	99 : 1	7.8
3	p-CH3-C6H4CHO	80	98 : 2	7.8
4	n-C ₆ H ₁₃ CHO	75	98 : 2	7.1
5	i-C ₃ H ₇ CHO ^b	68	99 : 1	7,6
6	CH3CH=CHCHO b	70	90 : 10	6.3
7	C6H5CH=CHCHO	80	92 : 8	6.5

Table Yields and Diastereoselectivities of 3

a; yield of three and erythro, b; 1 : 2 = 4 : 1 , c; J_{CH(OH)-CH(Ph)} of 3(three)

References and Notes

- R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 21, 555 (1982); Y. Yamamoto and K. Maruyama, Heterocycles, 18, 357 (1982).
- 2) J. M. Coxon, S. J. van Eyk, and P. J. Steel, Tetrahedron Lett., 26, 6121 (1985). Neither yield of 3 nor diastereoselectivity is described. Yield of 3 obtained by the action of tin(0) with aluminium powder is moderate (see text).
- 3) J. Nokami, J. Otera, T. Sudo, and R. Okawara, Organometallics, 2, 191 (1983).
- 4) M. Koreeda and Y. Tanaka, Chem. Lett., 1299 (1982).
- 5) T. Hiyama, K. Kimura, and H. Nozaki, Tetrahedron Lett., 22, 1037 (1981).
- 6) T. Hayashi, K. Kabeta, I. Hamachi, and M. Kumada, Tetrahedron Lett., 24, 2865 (1983).
- 7) Y. Yamamoto, H. Yatagai, Y. Isihara, N. Maeda, and K. Maruyama, Tetrahedron, 40, 2239 (1984).
- 8) Addition of HBr in the medium resulted in 57% of 3 (97:3) and 31% of 4, after 3 h stirring.
- 9) The authors are grateful to the Ministry of Education, Science, and Culture for a financial support by a Grant-in-Aid (No 60219020).

(Received in Japan 25 February 1986)